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• Goal: Predict the outcome (success/failure) of Falcon 9 first-stage landings to 
estimate launch cost-effectiveness.

• Business Relevance: SpaceX reduces costs by reusing the first stage; 
forecasting landing success is critical for new entrants like SpaceX.

• Data Sources:
• API (https://api.spacexdata.com/v4/launches/past) for structured launch 

records.
• Web scraping from Wikipedia for additional historical data.

Executive Summary

https://api.spacexdata.com/v4/launches/past
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• Key Steps:
• Data wrangling and feature engineering using Panda.
• Exploratory Data Analysis with SQL and Python.
• Predictive modeling using Scikit-learn Pipeline and GridSearchCV.

• Tools: Python, Pandas, BeautifulSoup, SQLite, Plotly, Dash, Scikit-learn
• Result:The Final classification model accurately predicts first-stage landing 

success and helps support operational planning.

Executive Summary
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Introduction

Project Objective

• My mission: predict whether the 
Falcon 9 first stage will 
successfully land after launch.

• Instead of rocket science, use public 
data and machine learning to make 
predictions.

• The outcome supports cost planning 
and strategic decisions for SpaceY, a 
startup aiming to compete with 
SpaceX.

Commercial Space Context

• The new space race has begun: 
players like Virgin Galactic, Rocket 
Lab, and Blue Origin are 
revolutionizing the industry.

• Among them, SpaceX stands out 
by drastically lowering launch costs 
thanks to the reuse of its Falcon 9 
first stage.

• A Falcon 9 launch costs $62 million 
vs. $165 million for traditional 
providers: reusability makes the 
difference.
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Section 1
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Executive Summary

1. Data Collection
• Launch data retrieved via SpaceX REST API: 

/v4/launches/past.

• Supplementary data scraped from Wikipedia using
BeautifulSoup for older launches.

Methodology

2. Data Wrangling & Feature Engineering

•Filtered for Falcon 9 launches only (excluded Falcon 1).
•Used additional API endpoints (Booster, Payload, Launchpad) to enrich features.
•Replaced missing values in PayloadMass with column mean.
•Created binary target variable: landing success (1) vs failure (0).

https://api.spacexdata.com/v4/launches/past
https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches
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3. Exploratory Data Analysis (EDA)

• SQL queries on cleaned dataset using SQLite.
• Correlation heatmaps and pivot tables to identify key features.
• Visualized success by site, orbit, and booster version.

4. Predictive Modeling

• Built a Scikit-learn Pipeline including preprocessing and classification steps.
• Performed hyperparameter tuning with GridSearchCV.
• Compared Logistic Regression, SVM, KNN, and Decision Trees.
• Selected best-performing model based on accuracy and interpretability.
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Data Collection – SpaceX API

GitHub Repository

The full implementation of the 
SpaceX API data collection, 
including the completed code and 
output cells, is available in the 
notebooks folder of the repository:

🔗🔗 github.com/VirginiaYonit/Falcon-
9-First-Stage-Landing-Prediction

https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction
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• Collected supplementary Falcon 9 launch data 
from Wikipedia.

• Parsed HTML tables using BeautifulSoup.

• Transformed scraped data into a Pandas
dataframe for wrangling.

• Cleaned data and merged with API records to 
enrich the dataset.

GitHub Repository
The complete notebook used for web scraping is available in the 
notebooks folder at:
🔗🔗 github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-
Prediction

Data Collection - Scraping

https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches
https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction
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Data Wrangling

• Filtered for Falcon 9 launches only
• Merged data from multiple sources (API + scraped

tables)
• Replaced missing values (e.g. Payload Mass) using

column mean
• Joined datasets using rocket, payloads, launchpad, and 

cores IDs
• Created new features (e.g. landing success class)
• Stored final dataset as CSV for EDA and modeling

GitHub Repository
All data wrangling steps are documented in the notebooks folder:
🔗🔗 github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction

https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction
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EDA with Data Visualization

Charts and Why They Were Used:

• Bar Plot: Landing Success per Orbit
To analyze if different mission orbits influence the success of first-stage landings.

• Bar Plot: Landing Success per Launch Site
To evaluate geographic performance and identify more reliable locations.

• Histogram: Payload Mass Distribution
To check for skewness and outliers that might affect model inputs.

• Scatter Plot: Payload Mass vs. Landing Outcome
To explore possible correlation between payload weight and landing success.

• Correlation Heatmap
To understand relationships among numerical features and guide feature selection.

GitHub Repository
The complete EDA with data visualization notebook is available at:
🔗🔗 github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction

https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction
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EDA with SQL

SQL Queries Performed

• Queried landing outcomes by booster version category to analyze success distribution
• Counted number of successful landings per orbit
• Grouped data by launch site and outcome to identify patterns across locations
• Calculated average payload mass per orbit to examine mission profiles
• Filtered for non-successful landings to explore failure conditions
• Used JOIN operations to combine launch and payload tables for more context
• Created views and CASE WHEN clauses to label success/failure for binary classification

GitHub Repository
The SQL analysis is documented in the EDA with SQL notebook, available at:
🔗🔗 github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction

https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction


Build an Interactive Map with Folium

Map Objects Added:

• Launch Site Markers

• Each marker represents a unique Falcon
9 launch site.

• The pop-up tooltip displays the launch
site name for quick reference.

• Circle Markers

• Visualize the geographical location of the 
launch sites with enhanced visibility.

• Used to emphasize site density and 
location relevance.

GitHub Repository
The complete notebook with the Folium map is available at:

🔗🔗 github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction

Purpose of the Map

• To provide spatial context for 
Falcon 9 launch activities

• To support geographic pattern 
analysis in conjunction with 
EDA

• To offer a more engaging and 
interactive view of where
missions take place

https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction
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Build a Dashboard with Plotly Dash

Plots and Interactions Added

• Launch Site Dropdown Menu
• Enables users to select a specific 

launch site or view all sites 
combined.

• Drives both pie chart and scatter plot 
interactivity.

• Pie Chart
• Displays the number of successful 

landings per site.
• Helps identify which sites have the 

highest success rate.

• Payload Mass Range Slider
• Allows users to dynamically filter the 

scatter plot by payload weight (kg).
• Facilitates exploration of how 

payload mass impacts landing 
success.

• Scatter Plot
• Visualizes the relationship between 

payload mass and landing outcome.
• Booster version color-coded for 

deeper analysis.
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Build a Dashboard with Plotly Dash

GitHub Repository

The completed Plotly Dash app is available in the project folder:
🔗🔗 github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction

Purpose of These Elements

• To provide an interactive exploration tool for launch outcomes.

• To allow cross-filtering by site and payload characteristics.

• To help identify trends and outliers in Falcon 9 mission data.

https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction
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Predictive Analysis (Classification)

Machine Learning Approach

• Goal: Predict binary outcome, whether the Falcon 9 first stage lands
successfully (1) or not (0)

• Pipeline Setup:
• Preprocessing with StandardScaler()
• Feature selection with SelectKBest()
• Classification model (tuned via GridSearchCV)
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Predictive Analysis (Classification)

Models Evaluated:

• Logistic Regression
• Support Vector Machine (SVM)
• K-Nearest Neighbors (KNN)
• Decision Tree Classifier

Why These Models?

• Provide a range of interpretability vs. 
complexity Allow robust testing of both
linear and non-linear decision
boundaries

• Easy to tune using GridSearchCV inside 
a unified pipeline

Best Performing Model:

SVM with RBF kernel

• Achieved the highest validation accuracy among all tested models
• Balanced performance and generalization
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Results

Model Accuracy
Logistic 
Regression 83.3%

SVM (RBF 
Kernel) 83.3%

KNN 83.3%
Decision Tree 77.8%

Model Comparison

Validation Accuracy

•All models performed well; SVM and Logistic Regression showed the best generalization.

•Models were evaluated using GridSearchCV within a unified pipeline.

•KNN matched the performance but was less interpretable.
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Confusion Matrix & Feature Insights

• Confusion Matrix (Best Model: SVM)

• Balanced prediction between successful and failed landings
• Low false positives, indicating reliability in success classification

• Key Features

• Payload Mass (kg)
• Orbit
• Flight Number

These features most strongly influenced the outcome, confirming insights from EDA.



Section 2
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This scatter plot shows how each launch site was used over time. Sites like CCAFS SLC 40
were active throughout many flights, suggesting operational consistency.
Differences in landing outcomes across sites may reflect variations in infrastructure, mission 
profile, or strategic shifts, for example, increased use of KSC LC 39A may align with 
improved landing capabilities.
Overlaying success/failure outcomes helps highlight whether certain sites are more favorable 
for first-stage recovery.

Flight Number vs. Launch Site
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This scatter plot displays the distribution of payload masses (kg) across different launch sites.
We observe that CCAFS SLC 40 handled a broad range of payloads, while KSC LC 39A
launched heavier missions.

Orange dots (class 1) suggest a higher success rate even for heavy payloads, especially at 
KSC LC 39A, possibly indicating advanced landing support or mission planning.

Payload vs. Launch Site
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This bar chart shows the landing success 
rate by orbit type.

Success Rate vs. Orbit Type

Missions to ES-L1, GEO, HEO, and SSO had a perfect success rate, likely due to optimized 
mission profiles and consistent conditions.
Lower success rates for GTO and SO orbits suggest greater complexity or energy demands, 
potentially impacting first-stage recovery.
This insight supports the inclusion of orbit type as a key feature in the predictive model.
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Blue dots (class 1) dominate later missions, suggesting that technological improvements 
and mission selection over time have increased success rates.

Together with the bar chart, this supports the orbit type’s importance as a predictive feature, 
not only for outcome but also for temporal evolution.

Flight Number vs. Orbit Type

This scatter plot shows how orbit 
types vary across flight history and 
how they relate to landing 
outcomes.

Red dots (class 0) indicate failed 
landings, particularly concentrated 
in early flights and in orbits like GTO
and ISS.
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This scatter plot explores the relationship 
between payload mass and orbit type, 
colored by landing outcome.

Lower payloads (under 6,000 kg) are 
spread across several orbits, with mixed 
results.

Payload vs. Orbit Type

Notably, heavier payloads (above 10,000 kg) are mostly associated with successful landings
(blue), despite their complexity, suggesting that payload alone doesn't determine recovery 
failure.

Certain orbits, like LEO and SSO, show consistently successful landings across various 
payload ranges, reinforcing their stability for recovery missions.
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Peaks in launch activity (2017, 2018, 2020) coincide with high success rates, reflecting 
operational maturity and technological refinement.

The data confirms that experience and scale correlate with better landing outcomes, 
supporting the time-dependent evolution of model features.

Launch Success Yearly Trend

This combined chart shows the average 
landing success rate (line) and number 
of Falcon 9 launches (bars) per year.

The trend highlights a clear increase in 
reliability over time, with success rates 
improving significantly from 2014 onwards.
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SELECT DISTINCT "Launch_Site" FROM SPACEXTABLE;

All Launch Site Names

This SQL query returns the distinct launch site names from the dataset.
The result identifies three unique sites used by Falcon 9:

• CCAFS LC-40
• VAFB SLC-4E
• KSC LC-39°

Note: CCAFS LC-40 appeared more than once in the raw data, but the DISTINCT clause
ensured uniqueness.
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SELECT *  
FROM SPACEXTABLE  
WHERE "Launch_Site" LIKE 'CCA%'  
LIMIT 5;

This query retrieves the first five launches from sites whose names begin with "CCA" (i.e., 
Cape Canaveral).

The result shows that:
• All five records are from CCAFS LC-40
• These early missions (2010–2013) primarily targeted LEO (ISS)
• Although the mission outcome was “Success”, the landing outcome was either “Failure 

(parachute)” or “No attempt”, indicating early development stages in recovery capability

Launch Site Names Begin with 'CCA'
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SELECT SUM("PAYLOAD_MASS__KG_") AS total_payload_mass
FROM SPACEXTABLE  
WHERE "Customer" = 'NASA (CRS)';

This query calculates the total payload mass (in kilograms) launched by Falcon 9 boosters 
for NASA's Commercial Resupply Services (CRS) missions.
• The result shows a total of 45,596 kg, confirming NASA as one of the major contributors 

to Falcon 9 launch mass.
• These missions typically target the International Space Station, reflecting recurring 

cargo supply objectives.

Total Payload Mass
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SELECT AVG("PAYLOAD_MASS__KG_") AS average_payload_mass
FROM SPACEXTABLE  
WHERE "Booster_Version" = 'F9 v1.1';

This query calculates the average payload mass (in kilograms) launched using 
the F9 v1.1 booster version.
• The result is an average of 2,928.4 kg, indicating that this early Falcon 9 variant 

was typically used for medium-weight missions.
• This helps contextualize the payload evolution across different booster 

generations.

Average Payload Mass by F9 v1.1
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SELECT MIN("Date") AS first_successful_ground_pad_landing
FROM SPACEXTABLE
WHERE "Landing_Outcome" = 'Success (ground pad)'

First Successful Ground Landing Date

This query finds the earliest recorded instance of a successful ground pad landing by 
applying the MIN() funciotn to the launch dates.
It filters the dataset for entries where the landing outcome was 'Success (ground pad)’ 
returning the first successful ground recovery date in the dataset. 
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SELECT "Booster_Version“
FROM SPACEXTABLE
WHERE "Landing_Outcome" = 'Success (drone ship)' 

AND PAYLOAD_MASS__KG_" > 4000  
AND "PAYLOAD_MASS__KG_" < 6000

Successful Drone Ship Landing with Payload between 4000 and 6000

This query retrieves the names of the booster versions that successfully landed on a drone ship 
while carrying a payload mass between 4,000 and 6,000 kg.
The result helps us understand which boosters are capable of executing successful landings under 
medium payload stress conditions.
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Total Number of Successful and Failure Mission Outcomes

SELECT "Mission_Outcome", COUNT(*) AS total_missions
FROM SPACEXTABLE
GROUP BY "Mission_Outcome"

This query groups the dataset by 
Mission_Outcome and counts how many
launches resulted in each outcome.

It provides a global summary of mission
success and failure, useful to assess
SpaceX's overall performance. 
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SELECT "Booster_Version", "PAYLOAD_MASS__KG_"
FROM SPACEXTABLE
WHERE "PAYLOAD_MASS__KG_" = (

SELECT MAX("PAYLOAD_MASS__KG_") FROM 
SPACEXTABLE
)

Boosters Carried Maximum Payload

This query identifies the booster versions that carried the maximum 
payload mass recorded in the dataset.
By nesting a MAX() function in the WHERE clause, it filters all records
to return only those matching the highest payload value.
The result shows that multiple Falcon 9 Block 5 boosters successfully delivered a payload of 
15,600 kg, highlighting their high performance and reliability. 



36

SELECT     substr("Date", 6, 2) AS Month,    "Booster_Version",    
"Launch_Site",    "Landing_Outcome“
FROM SPACEXTABLE
WHERE "Landing_Outcome" = 'Failure (drone ship)'  AND substr("Date", 
0, 5) = '2015'

2015 Launch Records

This query filters the dataset to display 
all drone ship landing failures that 
occurred in 2015.
It selects the month, booster version, launch site, and landing outcome for each failed 
attempt.
The result provides insight into the early challenges SpaceX faced during drone ship 
recoveries, offering useful context for understanding the evolution of landing success over 
time.



37

SELECT "Landing_Outcome", COUNT(*) AS outcome_count
FROM SPACEXTABLE
WHERE "Date" BETWEEN '2010-06-04' AND '2017-03-20‘
GROUP BY "Landing_Outcome“
ORDER BY outcome_count DESC

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

This query provides a clear view of how landing strategies 
evolved during SpaceX’s early years:
• "No attempt" was the most common outcome, especially in 

early launches.
• Equal counts of successful and failed drone ship landings

show experimental stages.
• The presence of ground pad successes and controlled 

ocean landings reflects progressive refinement of recovery 
techniques.

This ranking helps explain the transition from experimental recovery to consistent reuse.
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Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

This bar chart visualizes the frequency of 
landing outcomes during SpaceX's early 
missions.
Most launches during this phase did not 
attempt recovery, while drone ship landings 
show an equal count of successes and 
failures.
Ground pad landings and controlled ocean 
outcomes appear less frequently, 
highlighting the experimental nature of 
recovery efforts during this period.



Section 3
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This Folium map shows the geographical locations of SpaceX’s Falcon 9 launch sites across the U.S.
Key elements include:
• Markers for each launch site, labeled with site names (e.g., CCAFS, KSC, VAFB)
• Sites are concentrated along the U.S. coastlines, reflecting proximity to safe launch corridors over the 

ocean
• Florida hosts both KSC LC-39A and CCAFS SLC-40, which are the most frequently used sites
• VAFB SLC-4E, located in California, supports west coast polar and sun-synchronous launches
The map helps contextualize how geography influences launch direction, orbit type, and recovery 
strategies.

Falcon 9 Launch Sites Mapped with Folium
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These Folium map visualizations display individual launch outcomes clustered around each major 
SpaceX launch site.
• Colored markers represent mission outcomes:

Green = Success
Red = Failure

Launch Outcomes Visualized by Site with Folium

• Clusters help identify success density at each 
site:

• CCAFS SLC-40 and KSC LC-39A show a 
high concentration of successful landings

• The presence of failures in early launches
can be observed, particularly offshore

• Circle overlays around markers highlight 
proximity and geographic context



42

This Folium map displays the proximity of the 
CCAFS SLC-40 launch pad to the Atlantic 
coastline.
• The blue line indicates the shortest path 

between the launch pad and the coast
• The measured distance is approximately 0.90 

km, displayed on the line
• Marker clusters show the number of launches 

from this pad, color-coded by outcome
• The map also reveals road access (e.g., 

Samuel C Phillips Pkwy), highlighting logistical 
infrastructure

Launch Site Proximity to Coastline – CCAFS SLC-40

> This spatial insight reinforces 
how close proximity to the 
ocean supports safe launch and 
recovery operations, minimizing 
risk in case of failure.



Section 4
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Dashboard Overview – All Launch Sites Selected

> This view offers a global perspective, enabling high-
level pattern analysis across SpaceX’s entire launch 
history.

• The pie chart displays the total 
number of successful launches 
per site, helping identify the most 
frequently successful locations

• The scatter plot shows the 
relationship between payload mass 
and landing outcome across all 
sites, color-coded by booster version

• The payload range slider allows 
users to filter the scatter plot 
dynamically
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• This dashboard view shows the pie chart of launch outcomes for the selected site: KSC 
LC-39A.

• The blue segment (76.9%) represents successful landings
• The red segment (23.1%) corresponds to failed landings
> The site dropdown allows users to isolate KSC LC-39A and assess its performance 
independently: KSC LC-39A shows a high success rate, confirming its role as a reliable 
and advanced launch site, an insight useful for mission planning and feature engineering.

Launch Outcomes – KSC LC-39A
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Payload vs. Landing Outcome – All Sites

This dashboard section visualizes the relationship between
payload mass (kg) and landing outcome (class: 1 = 
success, 0 = failure), with points color-coded by booster 
version. 

> This view helps identify payload thresholds and 
booster effectiveness, making it a powerful tool for feature
inspection in modeling and mission optimization.

The slider above allows
users to interactively filter
payloads by mass.
The scatter plot reveals:

• Successful landings
occur across all
payload ranges, even
beyond 6,000 kg

• Newer boosters (e.g., 
B5) are more 
consistently
associated with 
successes, especially
at higher payloads
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Model Accuracy Comparison
This bar chart presents the validation 
accuracy of the four classification models 
tested during the project.
• Logistic Regression, SVM with RBF 

kernel, and K-Nearest Neighbors all 
achieved an accuracy of 83.3%, 
indicating strong performance and 
consistency on this dataset.

• The Decision Tree model 
underperformed slightly, with an 
accuracy of 77.8%, possibly due to 
overfitting.

• These results suggest that linear and 
kernel-based models are better suited 
to the structure of the data.

Classification Accuracy
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Confusion Matrix & SVM Choice
This confusion matrix visualizes the 
predictions of the best-performing model 
(SVM with RBF kernel) on the test set.
• The model correctly predicted 12 out of 

12 successful landings
• It correctly predicted 3 out of 6 failed 

landings, with 3 false positives
• The overall test accuracy is 83.3%, 

matching other models like Logistic 
Regression and KNN

Confusion Matrix
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Despite similar accuracy scores, SVM was chosen as the final model because:

• Better generalization
SVM with RBF kernel can capture non-linear decision boundaries, making it more 
robust to variations in data compared to simpler models like KNN or Decision Tree.

• Lower risk of overfitting
Decision Trees can overfit on small datasets, while SVM finds a max-margin hyperplane
that balances bias and variance.

• Consistent performance
SVM performed consistently during cross-validation (GridSearchCV) and had no false 
negatives (it never missed a successful landing).

• Interpretability in this context
While Logistic Regression is more interpretable, SVM is better suited for complex 
relationship and the confusion matrix confirms that its errors are limited to false 
positives, which may be more acceptable in this application.

Conclusions
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Appendix

Data Assets - Sources and Processing Summary

The project leverages two main sources of data:
• 1. SpaceX REST API

Data was retrieved from api.spacexdata.com/v4/launches/past, returning a JSON 
structure containing:
•Launch specifications
•Rocket and booster IDs
•Payload data
•Landing outcomes
Additional information was gathered using nested endpoints such as /rockets, /cores, 
/payloads, and /launchpads, using these IDs.

• 2. Web Scraping (Wikipedia)
Supplementary launch records were scraped using BeautifulSoup from Wikipedia launch
tables, then parsed and converted into Pandas DataFrames.

https://api.spacexdata.com/v4/launches/past
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Appendix

Data Preparation Steps Included:

• Normalizing JSON responses with json_normalize()
• Filtering to include only Falcon 9 launches
• Handling null values, especially in PayloadMass, by imputing with the column mean
• One-hot encoding categorical features (e.g., orbit, launch pad)
• Merging API and scraped data into a single, cleaned dataset ready for modeling

SQL Queries

• SELECT DISTINCT Launch_Site ...
• SELECT SUM(PAYLOAD_MASS__KG_) WHERE Customer = 'NASA (CRS)'
• SELECT MIN(Date) WHERE Landing_Outcome = 'Success (ground pad)'
• All grouped aggregations and filters (Mission Outcomes, Yearly Success, etc.)
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Appendix

Python Snippets

• Data Wrangling: payload cleaning, one-hot encoding, merging API + scraped data
• ML Pipeline: StandardScaler → SelectKBest → GridSearchCV
• Plotting: seaborn heatmaps, matplotlib bar charts, Plotly Dash callbacks

Notebook Outputs

• Confusion matrix (SVM)
• Classification accuracy chart
• Folium map screenshots

Repository
GitHub with full project:
github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction

https://github.com/VirginiaYonit/Falcon-9-First-Stage-Landing-Prediction
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